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Abstract The primary aim of this work was to evaluate

potential changes in the metabolic network of transgenic

wheat grain over-expressing the high-molecular-weight

(HMW) glutenin Dx5-subunit gene. GC–MS and multi-

variate analyses were used to compare the metabolite

profiles of developing caryopses of two independently

transformed lines over-expressing Dx5 and another two

independently transformed lines expressing only the

selectable-marker gene (controls). Developing grain at 7,

14 and 21 Days Post-Anthesis (DPA) was studied to

observe differences in metabolically active tissues. There

was no distinction between the Dx5 transformants and the

controls by principal component analysis (PCA) suggesting

that their metabolite compositions were similar. Most

changes in metabolite levels and starch occurred at 14 DPA

but tapered off by 21 DPA. Only 3 metabolites, guanine,

4-hydroxycinnamic acid and Unknown 071306a, were

altered due to Dx5 expression after correction for false

discovery rates (P \ 0.0005). However, discriminant

function analysis (DFA) and correlative analyses of the

metabolites showed that Dx5-J, which had the highest level

of Dx5 protein in ripe caryopses, could be distinguished

from the other genotypes. The second aim of this work was

to determine the influence of gene transformation on the

metabolome. Cross-comparison of the transformed controls

to each other, and to the Dx5 genotypes showed that

approximately 50% of the metabolic changes in the Dx5

genotypes were potentially due to variations arising from

gene transformation and not from the expression of the

Dx5-gene per se. This study therefore suggests the extent to

which plant transformation by biolistics can potentially

influence phenotype.

Keywords Transgenic wheat � Storage protein �
GC–MS � Multivariate analysis

1 Introduction

Wheat is one of the most important crops cultivated

globally (FAO 2006). It is valued for the gluten in the grain

which enables its use for bread and pasta-making (Vasil

2007). An important component of wheat gluten is the Dx5

protein, a high-molecular-weight glutenin subunit (HMW-

GS) (Shewry et al. 2002). There is a good correlation

between dough visco-elasticity and the amount of the
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HMW-GS in wheat endosperm (Payne et al. 1987; Shewry

et al. 2002, 2003). Accordingly, the HMW-GS genes were

some of the first to be manipulated by gene transformation

in order to define their role in determining dough charac-

teristics and to possibly engineer wheat with enhanced

functionality in food (Blechl et al. 1998; He et al. 1999;

Alvarez et al. 2000; Barro et al. 2002; Altpeter et al. 2004).

Plant gene transformation is done usually by biolistics or

Agrobacterium-mediated transfer and both can introduce

unintended genetic changes to the organism. Multiple and

randomly located gene insertions can occur, and the

introduced plasmid vector can become re-arranged or

truncated (Barcelo et al. 2001; Rooke et al. 2003). Biolis-

tics, the most frequently used method for wheat

transformation thus far (Fu et al. 2007), can produce as

many as 40 copies of the construct in a single site, as well

as multiple copies in random places in the genome (Vain

et al. 2002). These events have the potential to influence

phenotype especially if they disrupt the function of a

gene(s) by insertion. Furthermore, some characteristics in

the transformed progeny are due to the epigenetic and

genetic changes that can occur during tissue culture as well

as the expression of the selectable marker often engineered

into the plasmid vector (Filipecki and Malepszy 2006).

Therefore, independent of the gene sequence introduced,

lines produced by gene transformation may manifest phe-

notypes that are due to a combination of several factors

including changes in plasmid architecture, the site(s) of

plasmid integration, selectable marker expression as well

as somaclonal variation.

Molecular large-scale profiling technologies, i.e. trans-

criptomics, proteomics and metabolomics are useful tools

for evaluating compositional changes in transgenic crops

due to gene transformation (Baudo et al. 2006). Metabo-

lites, as the final products of gene activity, are good

indicators of meaningful biochemical changes that result

from transcriptional re-programming (Sweetlove and Fernie

2005). Metabolite profiling was used by Baker et al. (2006)

to determine the effect of altering the HMW-GS Dx5 sub-

units and other wheat gluten proteins on the biochemical

composition of ripened grain (Baker et al. 2006). They used

NMR and GC–MS to profile metabolites in ripened grain

sampled from plants grown over different years and in

various locations. The different transgenic and control lines

in that study could not be distinguished by principal com-

ponent analysis (PCA) suggesting that there were few

changes to the metabolome resulting from manipulation of

storage proteins composition in the ripe caryopsis.

We are interested in understanding how changing stor-

age protein biosynthesis in wheat caryopses might affect

the primary biochemical pathways in that tissue. To

address this, we assayed the polar components of the

developing grain in two transgenic wheat lines with

additional copies of the HMW-Dx5 gene and in two control

lines containing only the selectable-marker gene, bar, by

GC–MS. The wheat lines we studied were previously

analysed for changes in agronomic traits (Bregitzer et al.

2006), protein levels and dough functional properties

(Blechl et al. 2007). Over-expression of Dx5 in these lines

did not alter yield or total seed protein; however, there was

a redistribution of the individual components of the gluten

fraction with a change in dough properties (Blechl et al.

2007). When taken together, the independent studies of

differently produced transgenic lines over-expressing Dx5

by (Baker et al. 2006) and (Blechl et al. 2007) showed that

there were only minor changes due to the modification and

that physiological adjustments might have been limited to

storage protein biosynthesis with potentially minimal

impact on other pathways.

The primary aim of the work described in this paper

therefore, was to determine specifically, the way in which

metabolism was adjusted in order to compensate for over-

expression of Dx5 in developing transgenic caryopses. We

analysed the data by PCA, Independent Component Anal-

ysis and Student’s t-test to compare the genotypes and

determine if they are metabolically similar as indicated by

past research (Baker et al. 2006). Developing grain at 7, 14

and 21 DPA were studied to determine if development

influences the response to the perturbation. Baker et al.

(2006) used fully mature grain in their work and so

examining developing tissue may yield new information.

We also used additional multivariate analyses not per-

formed by Baker et al. (2006) in an attempt to see if the

Dx5 transformants and the controls could be differentiated

from each other. Correlative matrices of metabolites were

drawn for each genotype in order to build up a picture of

their metabolic network and to identify how they were

altered by over-expression of Dx5. A secondary aim of this

work was to determine the extent to which genetic and

epigenetic changes associated with gene transformation

influenced the phenotype of the transgenic lines. For these

analyses, the two independently transformed control wheat

lines were compared to each other and then to the Dx5

transformants, which gave some insight on metabolite

changes not associated with Dx5 over-expression.

2 Materials and methods

2.1 Plant material

Transformation of wheat lines with the gene encoding the

HMW-Dx5 subunit was by particle bombardment as

described previously (Bregitzer et al. 2006; Blechl et al.

2007). The lines BAR-C and BAR-D were transformed

independently with a single plasmid-type containing the
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selectable-marker gene, bar, under the control of the

ubiquitin promoter (Christensen and Quail 1996) (Table 1).

The Dx5-G and Dx5-J lines were independently trans-

formed with a mixture of the two types of plasmids; one

plasmid contained the native Dx5 gene under the control of

its own promoter and the other plasmid contained the same

chimeric selectable-marker gene (ubi-bar) as in BAR-C

and BAR-D. Dx5-G had 2.3-fold and Dx5-J had 3.5-fold

the level of Dx5 protein in the mature caryopses than a

non-transformed control, while the Dx5 levels in BAR-C

and BAR-D genotypes were similar to the same controls

(Blechl et al. 2007). Each line was grown under greenhouse

conditions as outlined in (Laudencia-Chingcuanco et al.

2007). All tissue was sampled from the T6 generation.

Whole caryopses, which include the pericarp, embryo and

endosperm, were harvested at 7, 14 and 21 DPA and

immediately flash-frozen in liquid nitrogen and stored at -

80�C until analyzed.

2.2 GC–MS and starch analysis

GC–MS analysis was done on a total of 60 samples. Two

individual caryopses were harvested from 5 plants, for each

genotype at the three developmental stages. Samples were

homogenised using a mortar and pestle, pre-cooled with

liquid nitrogen and the powder was extracted in 500 ll of

methanol; 20 ll of polar internal standard (0.2 mg ml-1

ribitol and norleucine in water) was added as a quantifi-

cation standard. The mixture was extracted for 15 min at

70�C and subsequently mixed vigorously with 1 volume of

water. After centrifugation at 2200g, the supernatant was

transferred into a new tubes and 2 aliquots, each of 100 ll,

were taken and dried in vacuo for further derivatisation

with TBS or TMS (Jacobs et al. 2007). Sample

derivatisation and GC–MS analyses were carried out as

previously described (Roessner et al. 2001, 2006; Jacobs

et al. 2007). Raw data was expressed as the relative

response ratios per gram fresh weight with the area of each

analyte normalised to the area of the internal standard,

ribitol (for TMS-derivatised samples) or norleucine (TBS-

derivatised samples), and the fresh weight of each sample.

Starch was assayed on caryopses sampled from the same

plants used for metabolite profiling as described (Beckles

et al. 2001).

2.3 Statistical and multivariate analysis of the dataset

The data matrix was calculated using the formula M 9 N

where M is the number of metabolites measured (109) and

N is the number of samples in the experiment (5 biological

replicates 9 4 genotypes 9 3 developmental stages). In

this experiment the entire dataset was M 9 N = 109 9

60 = 6540. Statistically significant differences in metabo-

lite levels between samples were identified using the

Student’s t-test at P \ 0.05 level (Steel et al. 1997). When

making parallel comparisons between many samples, the

possibility of falsely rejecting the null hypothesis, i.e.

determining that there is no statistically significant differ-

ence between samples increases significantly (Broadhurst

and Kell 2006). The Bonferroni correction was applied to

the generated data to detect those metabolite levels which

differed after correcting for false discovery (Abdi 2007).

The Bonferroni correction is a more conservative approach

to reducing false discovery. The P-value is lowered from

0.05 to 0.05/109 (number of metabolites measured) or

P \ 0.0005 (Abdi 2007).

Pearson’s product-moment correlation coefficients were

calculated from the data matrix using the response ratios

for each metabolite (Morgenthal et al. 2006). These cor-

relations are given as r-values where ‘‘1’’ indicates a

perfect correlation, ‘‘0’’ no correlation and ‘‘-1’’ shows an

inverse correlation between variables. The number of

metabolite-to-metabolite pairs analysed for the correlative

matrices of each genotype was [(109*109)/2 - (109/

2)] = 5886. Correlative analyses were computed using

Microsoft Excel (Seattle, WA), heat maps were displayed

using JCOLORGRID (Joachimiak et al. 2006).

Multivariate analyses were done after the data was

log10-transformed in order to bring the values closer to a

Gaussian distribution. Principal component analysis was

done using Statistical Analysis Software (SAS Inc, Cary

NC). Discriminant function analysis (DFA) and Indepen-

dent Component Analysis (ICA) were done using Statistica

Data Miner Software (Statsoft Inc., Tulsa, OK; Statsoft

2003). DFA is a supervised statistical algorithm that will

derive an optimal separation between groups established

a priori using within-group variances and covariance

Table 1 Plasmid constructs used in this study

Line

name

Plasmid 1

Promoter:Transgene

Plasmid 2

Promoter:Transgene

Dx5 protein

level

BAR-C – Ubi:bar x1

BAR-D – Ubi:bar x1

Dx5-G Dx5:Dx5 Ubi:bar x2.3

Dx5-J Dx5:Dx5 Ubi:bar x3.5

The genotypes used in this study were the T6 generation of lines

produced by microprojectile bombardment with either one (genotype

BAR-C and BAR-D) or two (Dx5-G and Dx5-J) plasmids. The

selectable marker was the bar gene which encodes resistance to the

herbicide bialaphos under the control of the ubiquitin promoter

(Christensen and Quail 1996). These genotypes were chosen on the

basis that they showed little variation in morphology or growth when

compared to the non-transformed controls. For a complete description

of plasmids and transformation events, as well as data on Dx5 protein

levels, please refer to previous publications (Blechl and Anderson

1996; Bregitzer et al. 2006)
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matrices developed from each group of data (Raamsdonk

et al. 2001). The a priori groups were defined as the dif-

ferent wheat genotypes in this study. The significance level

of the discriminant functions were determined using the

Wilks’ Lambda (Statsoft 2003). For ICA, the dimension-

ality of the data was first reduced using PCA (Scholz et al.

2004). The first nine PCs, which described 80% of the

variance between samples, were extracted and then ana-

lysed using fast ICA (Scholz et al. 2004).

3 Results and discussion

3.1 Principal component analysis (PCA) of metabolites

The primary aim of this work was to determine the extent

to which the four transgenic wheat genotypes studied were

similar to each other based on the polar metabolite com-

position of their caryopses. Lines BAR-C and BAR-D were

transformed only with the bar-plasmid while Dx5-G and

Dx5-J were co-bombarded with a mixture of the ubi-bar

and the Dx5-plasmid (Table 1). Caryopses were sampled

from five individual plants of each genotype at 7, 14 and

21DPA, and methanol extracts were analysed by GC–MS.

The entire dataset consisted of 60 samples. The relatedness

of the four transgenic wheat genotypes to each other was

first examined using PCA. PCA is an unsupervised multi-

variate method that allows patterns, trends, groups and

outliers in large datasets to be easily identified. The

dimensionality of complex data is reduced to what are

called Principal Components (PC) that retain the maximal

amount of variation within a sample. The first PC captures

the most variation; the second PC captures the next level of

variation and so on. For a detailed description of PCA the

reader is referred to Joliffe (1986). When the entire dataset

was analysed, there was no distinction between the Dx5-

and bar-only-transformed genotypes (Fig. 1). The 60

samples fell into classes based on caryopsis age (Fig. 1).

There was also a high level of plant-to-plant variation

evident from the PCA pattern. No separation of the geno-

types was observed when PCA was applied to the data

either at each developmental stage separately (Supple-

mental Fig. 1a–c), or using the means of the five individual

biological replicates for each genotype (data not shown).

The contribution of individual metabolites to the PCA

output in Fig. 1 was estimated from the PCA loading score

plot (Fig. 2). Metabolites that cluster around the origin of a

PCA loading plot make little contribution to the PCA

separation, whereas outlying metabolites have a greater

impact. Many of the metabolites grouped together (Fig. 2),

but away from the origin, which implies that all of these

metabolites contributed to the separation seen in Fig. 1.

Within this cluster are 12 metabolites with the highest

loading scores ranging from 0.125 to 0.128 on the first PC

(Fig. 2); these included three sugars, two sugar acids and

seven fatty acids (Supplemental data Table 1). In contrast,
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Fig. 1 Principal component analysis (PCA) of 109 polar metabolites

measured by GC–MS, in wheat caryopses harvested from the Dx5-G,

Dx5-J, BAR-C and BAR-D genotypes at 7, 14 and 21 DPA. Each of

the five biological replicates was individually plotted and the samples

were projected onto bi-plots showing the first two principal compo-

nents (PCs). Each symbol on the plot represents data from 109

metabolites reduced to a single data point defined by the first (PC1)

and second (PC2) principal components. Samples that have similar

metabolite composition will cluster together while samples that are

different will be further apart. The percentage variation explained by

each individual PC is shown in parentheses on each axis
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Fig. 2 PCA loading scores of 109 metabolites from the transgenic

wheat genotypes Dx5-G, Dx5-J, BAR-C and BAR-D. The loading

scores depicted were derived from the PCA output shown in Fig. 1.

The loading score of each variable (metabolite) defines the extent to

which it participates in determining the separation seen in a PC plot.

Each point on the graph shows a metabolite and the contribution of

that metabolite to the PCA output. Metabolites that cluster close to the

origin (zero) make no contribution, while outliers are presumed to

make a greater contribution to the classification of the data observed
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galactinol and succinic acid were outliers (Fig. 2) indicat-

ing that they may serve as developmental biomarkers in

these genotypes.

It is possible that PCA was not able to extract all of the

possible useful information from the dataset because of the

limitation of the technique (Kermit and Tomic 2003;

Scholz et al. 2004). We therefore used Independent Com-

ponent Analysis (ICA), which is often superior to PCA, in

an attempt to achieve better separation of the genotypes.

The ICA plots did not result in separation of the samples

based on genotype (data not shown) and as such did not

provide any further insight into the relationships of the

lines we examined. We were unable to discriminate

between the transgenic lines when applying unsupervised

clustering tools to the dataset. Our global analysis of polar

metabolite levels is therefore largely in agreement with that

performed by Baker et al. (2006), in spite of the differences

in the tissues and developmental stages used.

3.2 Discriminant function analysis (DFA) of genotypes

DFA is a supervised statistical algorithm that will derive an

optimal separation between groups established a priori by

maximizing between-group variance while minimizing

within-group variances (Raamsdonk et al. 2001). We

defined the a priori groups as the different wheat geno-

types. Using DFA, the wheat lines could be clearly

classified by genotype with the first discriminant function

(DF) accounting for 91% of the variance between samples

(Fig. 3a). The statistical significance of the DFs were cal-

culated using the Wilks’ Lambda and were found to be

highly significant (P = 0.00000 for DF1 and DF2, and

P = 0.000455 for DF3; Supplemental Table 2).

We analysed the potential effect of variance on the

DFA. The total within-group variance was higher in the

two Dx5-transformed genotypes when compared to the

vector-only lines, and was highest in Dx5-J. There was also

more variance at 7DPA than at 14 or 21DPA for all the

genotypes studied (data not shown). When the DFs were

Fig. 3 Discriminant function analysis (DFA) of 109 measured in

transgenic wheat caryopses. a DFA plots of Dx5-G, Dx5-J, BAR-C

and BAR-D genotypes. Samples were projected onto bi-plots of the

first two discriminant factors which accounted for 98.8% of the

variance observed. b Mahalanobis distances between genotypes. The

Mahalanobis distance calculates the position of the genotypes from

the centroids, or averages of their summed distances, in multidimen-

sional space. Each genotype is set at the baseline in turn and the

relatedness of the other genotypes is determined by how far away they

are positioned from that baseline. The statistical significance tests of

the Class-squared Mahalanobis distances between groups are also

shown. The F-value indicates the distance between groups and

measures the likelihood that the variances are different. The P-level is

the significance of that distance and estimates the probability that an

observed difference between groups occurred by chance alone. c
Contribution of each metabolite to the separation of genotypes by

DFA. Metabolites that contributed most to the separation of the

genotypes can be determined by the factor-structure coefficients. The

factor-structure coefficients describe the correlation between the

metabolites measured and the discriminant function, in this case using

the first two discriminant functions. Only one metabolite was an

outlier (UL028) and this compound is presumed to have made the

greatest contribution to the classification seen in Fig. 4a and b

c
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re-plotted taking into account the variance from develop-

mental stage, Dx5-J still was most disparate to the other

genotypes (data not shown). Further the variance found in

Dx5-G (12599) was similar to that in Dx5-J (13780), which

were both higher than that in BAR-C (11089) and BAR-D

(9280). Yet, by DFA, Dx5-G clustered together with the

controls and Dx5-J was an outlier. Variance alone is unli-

kely to be the sole reason for the divergence of the Dx5-J

from the other genotypes in this analysis.

To quantify the relationship of the genotypes to each

other, the DFs established for each genotype were aver-

aged to obtain what is described as the group ‘‘centroids’’

(Statsoft 2003). The distance from which each group

separates from the centroids is an estimate of their

relatedness; genotypes that are most similar will cluster

together whereas those that are least related will be more

distant from each other (Fig. 3b). From this assessment, it

can be deduced that BAR-C is similarly related to all of

the other genotypes, Dx5-G and BAR-D are more related

to each other, whereas Dx5-J is least related to all the

other genotypes (Fig. 3b). Tests of the statistical signifi-

cance of the distances (the Class-squared Mahalanobis

distance) between groups are also shown (See Fig. 3b

legend). The P-level estimates the probability that an

observed difference between groups occurred by chance

alone. The P-value for Dx5-J vs. BAR-D and Dx5-G is

0.066 (only slightly higher than 0.05) and, although not at

the statistically significant level, it does support the

observation that Dx5-J is different from the other

genotypes.

Next, the metabolite(s) responsible for the separation

seen in the DFA plot were identified. The factor-structure

coefficients describe the correlation between the metabo-

lites and the DF and are similar to PCA loading scores.

Plots of these coefficients show that Unknown compound,

UL028, was the only outlier of the 109 metabolites mea-

sured and, thus, differences in the level of this compound

probably underscored the separation of the genotypes by

DFA (Fig. 3c).

Overall the DFA results suggest that while the geno-

types are similar, Dx5-J which has the highest level of Dx5

protein can be discriminated from the other genotypes.

There was a discrepancy in the activity of the bar-gene in

Dx5-J line; although the presence of the bar gene was

confirmed by PCR, Dx5-J did not show the same level of

resistance to glufosinolate compared to the other genotypes

(Ann Blechl; personal communication). The extent to

which this influenced the results is not known. Neverthe-

less, it seems more plausible that the high level of Dx5 in

Dx5-J gluten, which caused severe changes in dough visco-

elastic properties of Dx5-J flour, resulted in many of the

differences among genotypes captured by DFA (Blechl

et al. 2007).

3.3 Metabolites levels in the wheat genotypes

Metabolites that differed in absolute content between the

Dx5-transformed genotypes and the controls were identi-

fied using the Student’s t-test and were painted onto a

metabolic map (4A-C). Parametric tests, like the Student’s

t-test, assume that the data have been sampled from a

population that approximates to a Gaussian distribution.

Non-parametric tests do not have this assumption of nor-

mality, however, they are less powerful, particularly with

small sample sizes where the P-values tend to be higher.

This makes it harder to identify real differences as being

statistically significant. The data was log-transformed in

order to bring the values closer to a Gaussian distribution

thus making the use of parametric tests feasible.

The levels of several intermediates of central metabo-

lism were affected as a result of Dx5 over-expression,

including some associated with the TCA cycle, amino acid

and fatty acid metabolism (Fig. 4a–c). Perhaps surpris-

ingly, there were comparatively fewer changes associated

with carbohydrate metabolism. Differences in metabolite

levels among genotypes were modest, with the greatest

magnitude generally less than fourfold (data not shown).

We checked the likelihood that compounds that differed

significantly between genotypes were false positives. The

Bonferroni correction, a highly stringent statistical criterion

(P \ 0.0005), was applied to the dataset (Broadhurst and

Kell 2006). It is often criticized as being too selective

because meaningful biological data may be lost, however it

reduces the possibility that the observed differences arose

by chance. Only 7 metabolites varied between genotypes

using this test (Table 2) and, when those compounds that

were different in content due to over-expression of Dx5

were considered, the list was further reduced to 3 metab-

olites (Table 2). They were guanine, 4-hydroxycinnamic

acid and the uncharacterized compound, Unknown

071306a. A role for these compounds in primary metabo-

lism in the endosperm is unclear. For example,

4-hydroxycinnamic acid is associated with cell wall

metabolism (Caspi et al. 2006) and guanine reportedly

accumulates to high levels in the embryo (Cheung and

Marcus 1976). Because the entire caryopsis was used it is

difficult to determine the extent to which these genotype-

based differences are due to metabolic activity in embryo

and pericarp as opposed to that in the endosperm where the

HMW-GS Dx5 is normally synthesized and stored. The

other affected compound, Unknown_071306a, was not

chemically identified and so we are unable to assign a role

for it in caryopsis metabolism.

It is possible that changes introduced into the transgenic

lines affected starch levels. Starch biosynthesis is the main

metabolic activity in the developing wheat caryopsis

(Stamova 2007) and changes in protein biosynthesis can
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Fig. 4 Mapping metabolite

changes between Dx5-

transformed and bar-only

genotypes. Each map represents

a different developmental stage:

a 7 DPA, b 14 DPA and c 21

DPA. Metabolites that were

different (P \ 0.05) between

Dx5-transformed genotypes are

shown on the map by coloured

boxes. Metabolites that differed

between Dx5-G and the two

bar-only transformants: light

squares; Dx5-J and the two

bar-only transformants: dark

squares; and metabolites that

were different between Dx5-G

and Dx5-J: black squares.

Metabolites that differed

between the two bar-only

transformants are not shown.

Metabolites that varied between

the genotypes that could not be

placed on the map are not

shown and are in the

Supplemental Fig. 2. There

were 11, 16 and 10 differing

compounds at 7, 14 and 21

DPA, respectively
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impact starch accumulation (Giroux et al. 1994). There was

increased starch in both Dx5 genotypes compared to the

controls at 14 DPA (Fig. 5), but not at any other stage. The

ratios of 3-phosphoglyceric acid (3-PGA) to phosphate,

which are indicative of conditions that regulate starch

biosynthesis (Tetlow et al. 2004), did not explain starch

content variation between genotypes (data not shown).

Differences in starch accumulation were probably a result

of a change in some unknown regulatory mechanism in the

developing caryopsis.

To sum up, the changes in metabolite levels brought on

by Dx5-over-expression affected many pathways, but these

were small. At P \ 0.0005, only 3 metabolites were altered

between the Dx5- and the control lines. Parametric tests

and multivariate analyses all indicate that disparities in

metabolite levels between genotypes were minimal

(Fig. 1). Differences in metabolite and starch levels

between the controls and Dx5 genotypes also changed

during development, with the most pronounced alterations

were found at 14 DPA and the fewest at 7 DPA (Fig. 4).

Table 2 Metabolites with significantly different levels between genotypes using the parametric Student’s t-tests

BAR-C/BAR-D Dx5-G/BAR-C Dx5-J/BAR-C Dx5-G/BAR-D Dx5-J/BAR-D Dx5-G/Dx5-J

av. ratio t-test av. ratio t-test av. ratio t-test av. ratio t-test av. ratio t-test av. ratio t-test

7 DPA

4-Hydroxycinnamic acid 1.57 0.01065 1.97 0.05954 1.34 0.13344 1.97 0.00042 1.34 0.02210 1.47 0.00146

Acetohydroxyamic acid 3.33 0.00009 2.43 0.01303 2.43 0.00777 2.43 0.00047 2.43 0.00020 1.00 0.98158

Guanine 1.66 0.00673 1.84 0.25004 0.99 0.00115 1.84 0.00064 0.99 0.92807 1.87 0.00003

Lactic acid 1.84 0.00247 3.23 0.00117 1.83 0.95903 3.23 0.00002 1.83 0.00066 1.76 0.00061

Unknown_071306a 2.04 0.00237 3.63 0.00333 2.78 0.12828 3.63 0.00016 2.78 0.00392 1.31 0.15340

14 DPA

4-Hydroxycinnamic acid 1.54 0.08533 1.02 0.87540 0.83 0.24020 1.57 0.04912 1.29 0.26106 1.23 0.11510

Acetohydroxyamic acid 1.88 0.02213 0.55 0.03556 0.94 0.70199 1.04 0.87162 0.00296 0.59 0.01017

Lactic acid 1.67 0.01681 1.25 0.20008 1.17 0.28715 2.09 0.00175 1.96 0.00040 1.07 0.60958

U_021706b_33.7 1.55 0.08528 0.96 0.81593 1.23 0.56858 1.49 0.07455 1.91 0.15302 0.78 0.48331

Unknown_071306a 2.27 0.05565 1.68 0.19908 1.57 0.09360 3.83 0.01836 3.57 0.00014 1.07 0.80245

21 DPA

1,6-Anhydroglucose 1.96 0.00046 0.82 0.42980 0.71 0.01079 1.61 0.20554 1.40 0.07949 1.15 0.64199

4-Hydroxycinnamic acid 1.54 0.00122 1.25 0.05887 0.87 0.29048 1.94 0.00087 1.34 0.10429 1.45 0.03272

Acetohydroxyamic acid 2.36 0.00054 0.78 0.14475 0.81 0.10593 1.84 0.03467 1.92 0.00648 0.96 0.81007

Heptadecanoic acid 0.99 0.94656 1.27 0.14915 0.90 0.53550 1.25 0.16027 0.89 0.48292 1.40 0.04189

Lactic acid 1.71 0.00002 1.78 0.00038 1.14 0.28333 3.04 0.00002 1.95 0.00206 1.56 0.00673

U_021706b_33.7 2.32 0.00017 0.70 0.02779 0.45 0.00415 1.62 0.01276 1.05 0.86413 1.55 0.10716

Unknown_071306a 2.29 0.00179 3.19 0.00532 1.34 0.18764 7.30 0.00140 3.06 0.00443 2.39 0.01607

This table represents a subset of the metabolites that accumulated to different levels among genotypes. The average ratio (av. ratio) was

calculated as described in Sect. 2. Significant t-test values (P \ 0.05) are marked in black and bold. All of the values corrected for false discovery

(Bonferroni corrections P \ 0.0005), are shown in this table and are marked in italics and bold
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Fig. 5 Starch content of

developing transgenic wheat

caryopses. Starch content was

measured using HPLC. Each bar

is the mean ± standard error of

the mean of 10 caryopses from 5

plants. Caryopses were sampled

from the same plants used for

GC–MS profiling. On the x-

axis: first row-developmental

stage in DPA; second row-plant

genotype. An asterisk indicates

statistically significant

differences between genotypes
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Gluten deposition begins at 14DPA in wild-type wheat

endosperm (Pomeranz 1988) and hence few metabolic

effects of over-expression of Dx5 might be detected before

then, i.e. at 7DPA. It is possible that in these transgenic

lines most of the mechanistic adjustments to Dx5 levels

occurred around 14 DPA, including an effect on starch

biosynthesis.

3.4 Differences in the structure of the polar metabolic

networks between genotypes

The structure of a metabolic network can be assessed by

examining its metabolite-to-metabolite ratios. These ratios

are the result of the stoichiometric relationships of several

biochemical reactions which are robust (ap Rees and Hill

1994; Morgenthal et al. 2006); only a fundamental distur-

bance of the metabolic network would disrupt these

established correlations (Fell 1997; Steuer et al. 2003; Steuer

2006). It therefore follows that changes in metabolite ratios

may be better indicators of biochemical pathway perturba-

tions than fold-changes in metabolite levels between

samples (Steuer et al. 2003; Morgenthal et al. 2006; Steuer

2006). Metabolite correlative analysis was effectively used

by Weckwerth et al. (2004) to identify changes in metabo-

lism in an Arabidopsis mutant that had a ‘‘silent phenotype’’,

i.e. showed no obvious metabolic or phenotypic effect of the

mutation. They were able to detect carbohydrates and amino

acids with altered profiles that differed in the mutant and

which may explain the result of the perturbation.

To determine potential structural differences in meta-

bolic networks due to over-expression of Dx5 we

performed a similar analysis as that done by Weckwerth

et al. (2004). Pair-wise comparisons of the 109 metabolites

to each other were calculated using Pearson’s correlation

coefficients. The resulting matrix is called the metabolite-

to-metabolite correlation matrix. Heat maps drawn using

these matrices give a bird’s-eye view of the unique sig-

nature of the metabolic networks that define each genotype

(Fig. 6a–d). From the data generated, several observations

can be made. As expected, most (76–86%) of the metabolic

correlative patterns were positive in each genotype, i.e.

r [ 0, however BAR-D had more positive correlations than

the others (Table 3). Metabolites with strong positive

correlations (r [ 0.95) have a high probability of being

connected biologically and may be under similar regulatory

control (Weckwerth and Fiehn 2002; Steuer 2006, 2007).

These metabolites represented 0.72–1.22% of the total

possible (5886) and, noticeably, fewer were found in Dx5-J

(Table 3). However at a lower r-value, i.e. [0.9, the

number of positive correlations was comparatively higher

in Dx5-J than the other genotypes (Table 3). The higher

variance found in Dx5-J could reduce the number of the

strongest correlations and partially explain this result. Still,

as pointed out previously, variance was similar between the

two Dx5-genotypes, yet Dx5-G behaves more similarly to

the controls, and Dx-5J differs, as in this analysis.

Another way of assessing the extent to which the

genotypes differ is to identify the number of metabolite that

did not correlate with others. As shown in Table 4, the

greatest contrast was between Dx5-J and the controls

(Table 4). A corollary of this analysis is to identify

metabolites that were negatively correlated, as a strong

negative correlation (r [ -0.8) between metabolites may

be due to different regulatory mechanisms acting at those

metabolic steps when compared to others (Weckwerth and

Fiehn 2002). These are shown in Table 5, there were three

negatively correlated pairs in Dx5-G and none in BAR-C.

There were no overlapping compounds between genotypes

and the role some of them play in metabolism (maleic acid

and 2,3-dihydrobutanedioic acid) is not clear. Galactinol

was negatively correlated with shikimic acid in Dx5-J and

was also a determinant of the PCA separation (Fig. 2 and

Supplemental Table 1), however the significance of this

observation is not obvious. We also identified metabolites

that are positively correlated in the controls but negatively

correlated in the Dx5 genotypes (or vice-versa) as they may

indicate changes that result from an abrupt switch or

reversal in a regulatory mechanism due to over-expression

of Dx5. Glycerol-2-P and tetracosanoic acid were nega-

tively correlated in Dx5-G (r = -0.329) and Dx5-J (r = -

0.340) but were positive in BAR-C (r = 0.520) and BAR-

D (r = 0.477). This was also true of threonine and UL028

where the Pearson’s r-values were -0.198, -0.230, 0.552

and 0.478 among Dx5-G, Dx5-J, BAR-C and BAR-D,

respectively. It is not possible to determine how, or if these

compounds are related biochemically, but they represent a

change in the genotypes that appears to be dependent on

Dx5-expression.

If the correlative analyses are an accurate reflection of

the metabolite networks in the samples studied then some

differences were identified between genotypes. The

metabolite network of the Dx5-J genotype appeared to be

most perturbed having the least number of strongly corre-

lating metabolites and the most differences when compared

to the controls. The caveat is that the variance in the sample

was highest for this genotype, however, it was only slightly

higher than Dx5-G which did not vary substantially from

the controls by correlative analysis. It is possible therefore

that over-expression of Dx5 contributed to the altered

metabolite network in Dx5-J.

3.5 Metabolites with altered developmental profile

between genotypes

Having looked at the overall topology of the network in the

genotypes, we then focused on identifying the specific

Metabolic profiling of transgenic wheat 247

123



metabolites that were altered. Such metabolites may rep-

resent points where the metabolic networks have broken

down and thus help in understanding how metabolism was

disrupted. There were a total of 47 such metabolites derived

from the correlative analysis (Supplemental Table 3).

Metabolites with modulated profiles in the Dx5-transformed

lines most likely arose from disturbances due to Dx5

expression. The ratios of proline, tetracosanoic acid and

glyceric acid to other metabolites were different in each of

the Dx5-transformed genotypes when compared to either of

the control lines or to each other. Shikimic acid and threonic

acid-1,4-lactone levels were changed in all comparisons

except Dx5-G to Dx5-J, which may indicate that larger

differences in Dx5 levels would be needed to show an

analogously altered profile between these lines. N-acetylg-

lutamate, a putative erythronic acid, and c-aminobutyric

acid (GABA) differed in 5 of the 6 genotype-to-genotype

comparisons. There was no immediately obvious connec-

tion between these metabolites, however, upon careful

examination, half of them: GABA, proline, glyceric acid

and N-acetylglutamine, are metabolically linked to gluta-

mine and glutamine (Fig. 3a–c). These amino acids are the

entry point for the biosynthesis of other amino acids and,

more importantly, make up 45% of the dry matter of the

Dx5 and other glutenin proteins (Pomeranz 1988). Detailed

studies of the storage protein composition of the Dx5-G and

Dx5-J lines indicated that there was an increase in the

percentage of total polymeric proteins which are glutamine-

and glutamate-rich (Blechl et al. 2007). It is intriguing to

speculate that the pathways immediately connected to these

‘‘core amino acids’’ were adjusted to meet the changes in

their soluble pools when used for Dx5 synthesis.

Fig. 6 Heat-map signatures of

the metabolite correlative

matrices for each genotype.

Heat maps for each genotype

were generated by computing

the Pearson correlation

coefficient for each metabolite-

to-metabolite comparison. Each

square on the heat map

represents the correlation

coefficient or linear relationship

that results when two

metabolites are compared to

each other in the 5 biological

replicates at the three

developmental stages (15

samples total). The number of

metabolite-to-metabolite pairs

analysed for the correlative

matrices of each genotype was

calculated as follows

[(109*109)/2 - (109/

2)] = 5886. The heat maps for

each genotype are as follows: a
Dx5-G; b Dx5-J; c BAR-C; d
BAR-D. Metabolites that did

not correlate with others are

shown in white, positive and

negative correlations are shown

as darker hues
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3.6 Metabolite profiles of unknown polar compounds

Some compounds that have not been structurally defined

showed significant differences between genotypes (Fig. 4

and Table 4), and one of them (UL028) was identified by

DFA as determining the separation between genotypes

(Fig. 3a). It would be interesting to determine a potential

role for these compounds in central metabolism by cor-

relative analysis (Fig. 7). The strongest correlations for

these unknown compounds were found with metabolites

involved in carbohydrate and fatty acid metabolism (7a–c).

Examination of their spectral features show that

U_021706b_33.7 and Unknown_071306a are not related to

sugars or fatty acids. The strong correlations we observed

may be the result of connections, through a common pre-

cursor or regulatory mechanism, to compounds of central

metabolism. Determining the structures of these

‘‘unknown’’ compounds may help to elucidate their roles, if

any, in biological processes in wheat caryopses.

3.7 Effect of gene transformation on metabolic

networks

A secondary aim of this work was to assess the extent to

which genetic changes due to variations produced by the

gene transformation process itself can alter metabolism in

wheat caryopses. Genetic manipulations through in vitro

techniques can introduce spurious but heritable variability.

The expression of the selectable marker genes, the place(s)

where the plasmid integrates in the genome as well as

plasmid architecture and copy number and epigenetic

changes due to somaclonal variation, may all have unpre-

dictable effects on the transgenic organism (Barcelo et al.

2001). Several results point to significant genetic changes

that were not attributable to Dx5 expression but could be

due to variation arising from gene transformation. First, the

number of metabolites that were altered when BAR-C and

BAR-D were compared was in the same range seen as

when they were compared to the Dx5-transformed geno-

types (data not shown). Second, several compounds that

varied in content between Dx5-transformed genotypes and

the bar-only controls also differed when the two controls

were compared to each other (Table 4 and Supplemental

Table 4). Seven compounds differed between the geno-

types after correcting for false discovery (Table 2), and

over half (four) were also altered when the two bar-only

controls were compared side-by-side. Third, of the 47

metabolites with altered profiles identified from the cor-

relative analysis, 22 varied when BAR-C and BAR-D were

compared to each other and therefore may be due to

Table 4 Number of metabolites that do not correlate (r \ 0.90) when compared between genotypes

Genotypes compared

r \ 0.90

Dx5-G vs.

BAR-C

Dx5-G vs.

BAR-D

Dx5-G vs.

Dx5-J

Dx5-J vs.

BAR-C

Dx5-J vs.

BAR-D

BAR-C vs.

BAR-D

Number of metabolites 21 23 29 32 31 23

The response ratios (the average metabolite levels) of each of the 109 metabolites were compared for each combination of pairs of genotypes and

at all developmental stages. Pearson rank correlation coefficient was used to determine the extent to which they correlated and the number that

did not for each pair are indicated here

Table 5 Negatively correlating metabolite pairs in the wheat transgenic genotypes

Genotype Negatively correlating metabolite pair r-value P-value

BAR-C – –

BAR-D t-Ferulic acid Maleic acid -0.823 1.6E-04

Dx5-G 2,3-Dihydroxybutanediol Tryptophan -0.804 3.0E-04

2,3-Dihydroxybutanediol UL028 -0.844 7.6E-05

1-Inositol phosphate Putrescine -0.811 2.4E-04

Dx5-J Shikimic acid Galactinol -0.815 2.1E-04

Metabolites that were negatively associated in each wheat genotype as determined by Pearson’s rank correlations. An all-to-all comparison of

the 109 metabolites was done and those showing a strong negative correlation are shown. Each correlations has a P-value below 0.05/109 =

4.6E-04 (Bonferroni correction) and are statistically significant

Table 3 Metabolite-to-metabolite relationships within each genotype

Correlations Dx5-G Dx5-J BAR-C BAR-D

0.95 B r B 1.0 73 43 69 70

0.90 B r \ 0.95 195 212 165 263

0.80 B r \ 0.90 478 499 401 644

The number of positively correlating metabolites within each geno-

type. Correlations were calculated using Pearson rank correlation

coefficient; the r-value shows the strength of the relationships. A total

of 5886 correlations were possible
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genetic changes associated with the transformation process

(Supplemental Table 4). These compounds included car-

bohydrates (5), amino acids (5), TCA intermediates (3),

fatty acids or fatty acid intermediates (3), and compounds

not involved in primary metabolic pathways (6), illustrat-

ing the broad and non-specific nature of the metabolic

changes induced by transformation. We are unable to

definitively pinpoint the underlying cause of differences

between the selectable-marker controls, as this was beyond

the scope of our study. Even so, these results underscore

the findings in the literature that the effects of gene trans-

formation, i.e. position effects, level of selectable-marker

expressed and/or somaclonal variation, can influence

physiological and biochemical processes in transgenic

organisms (Filipecki and Malepszy 2006). The fact that

over-expression of Dx5 showed a ‘‘silent phenotype’’ per-

haps made identifying the effect of gene transformation

easier. Still, this conclusion is based only on the mea-

surements of a small number of highly abundant

metabolites in the caryopsis and may not be representative

of broader changes to the metabolome.

4 Conclusion

Given the plasticity and complexity of plant metabolism it

is not possible to make sweeping conclusions about the

effects of changing Dx5 expression in wheat caryopses

from a single study. Therefore this work complements and

extends existing knowledge of how over-expression of Dx5

affects wheat metabolism. Baker et al. (2006) compre-

hensively assessed, using metabolite fingerprinting and

GC–MS, the effect of the environment on Dx5-transformed

genotypes. They used flour milled from ripened caryopses

bulked from several plants. In our study two independently

derived transformants over-expressing Dx5 and two inde-

pendently derived bar-only transformed genotypes were

used, to provide insights on the potential effect of gene

transformation as well as those of the specified perturba-

tion. Approximately 50% of the observed changes in

metabolites were caused by genetic changes from plant

Fig. 7 Correlative scatter plots of metabolite levels in transgenic

wheat genotypes. Each graph depicts a single compound with the

highest correlative pattern when compared with one of three unknown

compounds. Graphs (a–c) show the correlation of a UL028; b
U_021706b_33.7 and c Unknown_071306a with other metabolites in

each genotype. There are 15 points on each graph and an individual

point or symbol represents metabolite level measured in one of the

five biological replicates at one of the three developmental stages

studied. The levels of the unknown compounds were identified as

altered due to over-expression of Dx5 in different statistical tests. The

strength of the correlation is indicated by the regression value (r) on

each graph. The P-value for each correlation was \1.0E-4 and are

likely to be statistically significant
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transformation. Furthermore, metabolites in caryopses

from five individual plants were assayed to observe plant-

to-plant variation, which was as high as the variation

between genotypes. Analysis of tissues of different devel-

opmental stages suggested that changes in metabolite

levels ‘‘normalised’’ with maturation. Our multivariate

analysis showed that in spite of the similarity between

genotypes by PCA and parametric tests, the genotype with

the highest level of Dx5 could be differentiated from the

others.
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